Optimal-path cracks in correlated and uncorrelated lattices.
نویسندگان
چکیده
The optimal path crack model on uncorrelated surfaces, recently introduced by Andrade et al. [Phys. Rev. Lett. 103, 225503 (2009).], is studied in detail and its main percolation exponents computed. In addition to β/ν=0.46±0.03, we report γ/ν=1.3±0.2 and τ=2.3±0.2. The analysis is extended to surfaces with spatial long-range power-law correlations, where nonuniversal fractal dimensions are obtained when the degree of correlation is varied. The model is also considered on a three-dimensional lattice, where the main crack is found to be a surface with a fractal dimension of 2.46±0.05.
منابع مشابه
Fracturing the optimal paths.
Optimal paths play a fundamental role in numerous physical applications ranging from random polymers to brittle fracture, from the flow through porous media to information propagation. Here for the first time we explore the path that is activated once this optimal path fails and what happens when this new path also fails and so on, until the system is completely disconnected. In fact many appli...
متن کاملCorrections to scaling for watersheds, optimal path cracks, and bridge lines.
We study the corrections to scaling for the mass of the watershed, the bridge line, and the optimal path crack in two and three dimensions (2D and 3D). We disclose that these models have numerically equivalent fractal dimensions and leading correction-to-scaling exponents. We conjecture all three models to possess the same fractal dimension, namely, d(f) =1.2168 ± 0.0005 in 2D and d(f) = 2.487 ...
متن کاملA reciprocal formulation of non-exponential radiative transfer. 1: Sketch and motivation
Previous proposals to permit non-exponential free-path statistics in radiative transfer have not included support for volume and boundary sources that are spatially uncorrelated from the scattering events in the medium. Birth-collision free paths are treated identically to collision-collision free paths and application of this to general, bounded scenes with inclusions leads to non-reciprocal t...
متن کاملFracturing highly disordered materials.
We investigate the role of disorder on the fracturing process of heterogeneous materials by means of a two-dimensional fuse network model. Our results in the extreme disorder limit reveal that the backbone of the fracture at collapse, namely, the subset of the largest fracture that effectively halts the global current, has a fractal dimension of 1.22 ± 0.01. This exponent value is compatible wi...
متن کاملEfficient Optimal Search of Euclidean-Cost Grids and Lattices
We describe a simple technique to speed up optimal path planning on Euclidean-cost grids and lattices. Many robot navigation planning algorithms build approximate grid representations of the environment and use Djikstra’s algorithm or A* to search the resulting embedded graph for an optimal path between given start and goal locations. However, the classical implementations of these search algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 83 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2011